Cartorhynchus: helping ichthyosaurs crawl back into the mainstream.

Over the last 12 months or so, I’ve been researching ichthyosaurs for my masters project, and since then, I’ve been working on publishing my results. As such, I’ve learnt a fair bit of ichthyosaur palaeobiology and systematics. I’m no expert, but at this early stage in my academic career, I can say that at the moment, ichthyosaurs (specifically ichthyosaur endocranial anatomy) are my ‘specialisation(s)’, perhaps even making me an ichthyo-sir (heh). To this end, Motani et al.’s recent publication in Nature was massive news for ichthyosaur palaeobiologists. And that’s why it’s got its own little blog post.

What’s all the fuss about then? This year (2014) marked the anniversary of the 200 years since the first appearance of ichthyosaurs in scientific literature, and ichthyosaurs are closely associated with palaeontological celebrities, both historical (Mary Anning) and rather more recent (Alfred Romer). In those 200 years, we’ve learnt a lot about ichthyosaurs, and whilst they’re not ‘some kind of fish-lizard’, they are diapsid reptiles that were some of the first tetrapods to evolve a thunniform (fish/tuna-like) bodyplan, which aided them in their marine adventures. We know what colour some of them were thanks to melanosomes (Lindgren et al. 2014), we also know that they gave birth to live young, like mammals and some sharks do. We have exceptional fossils of ichthyosaurs actually giving birth, and others with amazing detailed and undisturbed soft tissue outlines. However despite all these amazing discoveries, we still don’t know a whole lot about two major aspects of ichthyosaur palaeobiology: their precise biomechanical function (we can’t create fancy 3D digital models due to the lack of 3D specimens, most ichthyosaur remains are mostly pancake-flat, even the really awesome ones) and perhaps more importantly, how they place in wider diapsid phylogeny.

The miracle of ichthyosaur birth, over 200 million years-ago. Very cool.

The miracle of ichthyosaur birth, over 200 million years-ago. Very cool.

Now before I go any further, it might be a good idea to explain what I mean by diapsid. Diapsida is a group of organisms (more specifically tetrapods) that have two temporal fenestrae (holes) in each side of their heads. Now this is a pretty large group, including archosaurs (dinosaurs, birds and crocs), lizards, snakes and tuataras. So whilst we have some vague idea where ichthyosaurs lie within this pretty large evolutionary tree, we’re not entirely sure. Why? Well because we don’t have transitionary fossils, ichthyosaurs previously (before Motani et al. 2014) appeared in the fossil record as highly adapted marine reptiles, well suited to the marine environment (remember, they look like fishes). So without any hint of which precise group of terrestrial organisms they evolved from, the topic of where ichthyosaurs came from is highly debated. So much in fact that in 2006, a very prominent ichthyosaur worker, Michael Maisch declared that the placement of ichthyosaurs within Diapsida was “…impossible…” (Maisch et al. 2006) without more basal specimens.

The internal phylogeny of ichthyosaurs isn’t a much better state either, with tree topologies changing at every opportunity of the last 10 years or so, threatening to change again when new systematic methods are applied. This again is largely due to the lack of well preserved three-dimensional specimens. But it’s not all doom and gloom, amazingly preserved specimens like those used in Lindgren et al. 2014 have shown us the colour of these ancient fish-dolphins (joke name, please don’t take it seriously), and Fischer et al. 2013’s discovery of Malawania has helped, to some degree, solve the internal phylogeny of at least neoichthyosaurs and ophthalmosaurs (ichthyosaurs from the Jurassic onwards). And obviously, my work on ichthyosaur endocranial and neuroanatomy from an exceptionally three-dimensionally preserved specimen will be hopefully  well received (more on that in the coming months). So it’s not all doom and gloom. But still, ichthyosaurs aren’t exactly the Brangelina of the palaeontological scene, no sir, those celebrity couples occupying all the headlines are dinosaur discoveries such as Deinocheirus and Dreadnoughtus, and the number of ichthyosaur workers isn’t exactly huge.

To my shocked delight, on the afternoon of the 5th of November, 2014 I stumbled upon a fresh new ichthyosauriform, in a Nature paper. Good heavens! Could it be true? Well, of course, other wise I’d have spent the last hour typing madly about ichthyosaurs for no apparent reason. Catorhynchus lenticarpus (‘shortened snout’, ‘flexible wrist’) is a weird, small beast. At first glance, you’d be forgiven for thinking that Catorhynchus wasn’t even a ichthyosaur at all. Well, technically, it isn’t an ichthyosaur at all, it’s an ichthyosauriform.  Catorhynchus comes from the Lower Triassic, approximately 248 million years-ago, and whilst some would call it an ‘ichthyosaur’, the Ichthyosauria (essentially all of the things your properly allowed to call ‘ichthyosaurs’) didn’t occur until later on in the Triassic. So, what the hell is Catorhynchus? Simple, it’s an ichthyosauriform, an ichthyosaur-looking creature which is more closely related to Ichthyosaurus communis than to a hupesuchian? Wait, what the hell are hupehsuchians, and what do they have to do with anything?

Hupehsuchians, think ichthyosaurs but a little more 'vacant' looking.

Hupehsuchians, think ichthyosaurs but a little more ‘vacant’ looking.

Good question. Hupehsuchians are a weird bunch of marine reptiles, who you’d be very much forgiven for calling ichthyosaurs, because well, they look quite a lot like ichthyosaurs. This simple fact has led many researchers to state that ichthyopterygians and hupehsuchians were related, however, there’s been little evidence to really cement this (just because two organisms look the same/have similar features, doesn’t mean they’re closely related. For example birds and bats both have wings, but they evolved powered flight independently and convergent to each other). As I’ve previously said, this is due to the lack of really primitive fossil ‘ichthyosaurs’ as well as our fairly poor understanding of where ichthyosaurs fit relative to other diapsids. However, Catorhynchus has given us a glimmer of hope, enabling us to, for the first time, really start to understand how ichthyosaurs first came about. Now, thanks to Catorhynchus, we think that ichthyosauromorphs (which now includes hupehsuchians) originated in China in the Earliest Triassic, which was a warm tropical archipelago ‘back in the day’. This is interesting, as we know that other groups of marine reptiles, such as sauropterygians (plesiosaurs, pliosaurs et al.) may have also originated in this area at the same time, so Earliest Triassic China may have provided very good conditions to harbour the evolution of many marine reptiles.

Phylogeny of ichthyosauromorphs, modified from Motani et al. 2014.

Phylogeny of ichthyosauromorphs, modified from Motani et al. 2014.

Don’t worry, I’ll stop teasing you now, I’ll actually talk about the fossil for a bit. With a host of unusual features such as really short snout, large flippers and a short body length (the shortest of all ichthyosauromorphs, estimated at a tiny 40 cm) and a really deep lower jaw, Catorhynchus is a weird beast. Yet, despite all these abnormalities, it looks like an ichthyosaur, I mean look at those big eyes! However, it also looks like a juvenile ichthyosaur. For me, and other ichthyosaur workers I’ve spoken to, this is the main reason why people of sceptical about drawing so many big conclusions from Catorhynchus. However, other people (untrustworthy creator of have said that it certainly can’t be an ichthyosaur, and has to be an ‘ichthyosaur-mimic’, because yeah, if it has loads of scientifically diagnostic features of an ichthyosaur the most obvious answer is that it wants you to think it’s an ichthyosaur, just to troll the scientific community, and then years later scream ‘psyche!’ to everyone, you know, because fossils love to mess with us, the jerks.

Catorhynchus fossil from Motani et al. 2014. E represents a  newborn Chaohusaurus, for comparison.

Catorhynchus fossil from Motani et al. 2014. E represents a newborn Chaohusaurus, for comparison.

ANYWAY. I think it’s worth pointing out that it realistically might turn out to be a juvenile, even though Motani et al. do present some evidence that it’s a fully grown adult, for example the forefins of Catorhynchus are almost as long as its skull, a feature found exclusively in adult individuals. However, it’s also worth mentioning that even despite this, Motani et al. don’t completely dismiss the possibility of this specimen being a juvenile. Essentially, I feel it’s best to take this discovery with a pinch of salt until we find a few more specimens of Catorhynchus. Despite this uncertainty, we can be fairly sure that Catorhynchus may have been amphibious. Yeah, that’s right, amphibious and NOT an amphibian. Other articles have said that Catorhynchus is an amphibian, this is incorrect, as Amphibia form their only little group of organisms, which ichthyosauromorphs aren’t part of! However, Catorhynchus is amphibious, i.e. it shares its time between land and water. How do we know this? Well from the fossil, Motani observed that the carpus may have allowed the flipper to bend in a way much like the flippers can bend in seals, and since seals have flippers for limited terrestrial locomotion, it seems likely that this was also the case for the flippers of Catorhynchus. Motani also presents a case for suction feeding in Catorhynchus, which brings the contentious debate of whether other ichthyosaurs fed via suction feeding back to the table.

To summarise Motani and friends have presented the world with a new ichthyosauromorph which, if verified with further specimens, will help us to really start to understand how ichthyosaurs (and perhaps marine reptiles more widely) first evolved, as well as to understand the place of ichthyosauromorphs within Diapsida. And since it was published in Nature, it might turn a few heads, perhaps persuading more people to join the very small field of ichthyosaur of palaeobiology. As always let us know what you think, comment below or Tweet us (or indeed, even Facebook us).

Not only was it amphibious, Catorhynchus was also the most miserable of all the ichthyosauromorphs.

Not only was it amphibious, Catorhynchus was also the most miserable of all the ichthyosauromorphs.

Deinocheirus: why beer-bellies are bad-ass and the importance of being weird

Today started out as a fairly normal day. I overslept thanks to marathonning House late into the night/morning (note: not due to working late/early on my publication, oops), I dragged myself out of bed and into the office. I then, still half-asleep checked Twitter (the morning ritual was well underway) and then suddenly, I displayed both ends of the NedryGrant excitement chart (patent pending) simultaneously. Deinocheirus. It was DeinocheirusDEINO-RUDDY-CHEIRUS! At the moment, I’m in an office full of volcanologists, so no-one understood my excitement (in fact most thought I had some form of disposition, I mean I was practically frothing at the mouth with excitement). I immediately texted Richard and all my other palaeontological friends/colleagues with two words: DEINOCHEIRUS PUBLISHED.

My face on the morning of the 22nd October 2014. (I even laughed like a Dilophosaurus).

Story time

So why was I so stupidly excited? Well, I’m glad you asked. To explain this excitement, our tale begins in 1965. It was July, and the Polish-Mongolian Palaeontological Expedition had stumbled upon a ‘monster’ find. Forelimbs and a shoulder girdle 2.4 metres long belonging to a 70 million-year-old dinosaur with surely the largest forearms of a bipedal animal ever. However, that was all they found. What in the Seven Hells was this magnificent beast? Surely these the arms of some superpredator, akin to Allosaurus or perhaps a mega-Velociraptor? Deinocheirus mirificus was (‘unusual horrible hand’) was ‘born’. For seven-years, this was the most likely explanation. In this time, palaeontologists and members of the public alike went wild with fantastical recontructions of this new and wacky beast, some even going as far as noting that the arms were used much like those of a giant sloth. Alas, in 1972 John Ostrom (the guy responsible for revolutionising the way we think about dinosaurs in relation to birds in the 60s) noted that the bones in the forearm of Deinocheirus appeared similar to those found in the ornithomimosaurs, a group of secondarily-herbiverous theropod dinosaurs very similar to modern ostriches. This agreed with the sentiments of the team that initially discovered Deinocheirus, so it was settled, the beast was in fact an ornithomimosaur. Mystery solved. Right?

Dem Claws.

Dem Claws.

Unfortunately not. Fast forward a little over 40 years later to October 2013, and we still hadn’t found any more remains of the all-too mysterious Deinocheirus. That was all to change. At the SVP 2013 Symposium (one of the biggest annual events in palaeontology) there were hushed, exciting whisperings of new Deinocheirus material (apparently, I couldn’t afford to go). And then, a speaker emerged and confirmed it, Deinocheirus was back, the mystery was apparently solved. New material had been discovered and we now had a 95% complete skeleton to work with. However, this wasn’t fully shown at SVP, and the entire palaeontological community had to wait with baited breath until the work was published. One of the greatest mysteries of 20th and 21st century dinosaur palaeontology had been solved, but we had to wait. It was agonising. Personally, I grew up enthralled with the mystery of Deinocheirus as did many palaeontologists, both young and old, so to be kept in the dark like this was painful.

The Big Reveal

Fast forward again, exactly (pretty much) to a year later. Late October 2014. A dreary-eyed, 20-something-year-old palaeo grad-student is almost hyperventilating over an image he found on Twitter. Ladies and gentlemen, Deinocheirus has landed. And bloody hell if it isn’t the weirdest thing we’ve ever seen.


The Beer-Bellied weirdo in all it’s glory. Deinocheirus mirificus.

Mystery Solved

Standing almost as tall as T. rex, and weighing in at a hefty 6 tonnes Deinocheirus is the biggest ornithomimosaur to dateSo it was big, no biggie right (heh)? Wrong, in addition to it’s monstrous size it’s also (and I might have already said this) bloody weird. With a really deep lower jaw, no teeth, huge forearms, relatively small hindlimbs, a big old “beer belly” (the best description of dinosaur’s anatomy ever, thanks Tom Holtz!) and tall neural spines (similar to those seen in SpinosaurusDeinocheirus sure is different to the ‘typical’ ornithomimosaurian body plan of Galimimus, with long legs and many other features that suggested it was a fast runner. Quite the opposite, Deinocheirus was a big, sluggish brute with a huge appetite. After 50 years, the mystery of Deinocheirus seems to be solved then, it’s a incredibly odd looking, slow moving, bulky, T. rex sized, beer-bellied behemoth. Myth busted, right?

Skeletal reconstruction of Deinocheirus mirificus. Modified from Lee et al. 2014.

Skeletal reconstruction of Deinocheirus mirificus. Modified from Lee et al. 2014.

Again, wrong. These new specimens are that good that we can already begin to hypothesise how Deinocheirus actually lived out it’s seemingly odd, slow lifestyle. Deinocheirus was discovered in the Nemegt Formation, a deposit which is 70 Million years-old (Late Cretaceous), and was an ecosystem similar to that of the Okavango delta today. First off, over 1400 gastroliths were present, probably used to aid in digestion of food, (mainly plants) making up for the lack of teeth. The morphology of it’s jaws and its broad bill (similar to those found in hadrosaurs and ducks) suggest that certain muscles associated with biting were small, meaning that Deinocheirus probably ate soft (and possibly water-dwelling) plants. But there wasn’t just some stones in that big beer belly, no sir! Evidence of a half-eaten fish was found as well, indicating that Deinocheirus was no means a fussy eater, and probably a ‘megaomnivore’ eating pretty much anything it could get it could swallow. This seems to fit well, especially when you consider Deinocheirus’ place in the Nemegt ecosystem, as generalist ‘all you can eat’ type deal (finally, a dinosaur I can relate to) it wouldn’t be in such harsh competition with the other herbiverous dinosaurs in the area that mostly ate plant matter from trees. However, not only do you need to outcompete you friendly neighborhood herbivores to keep on truckin’ in a Cretaceous world, you also need to be not eaten yourself. The main threat in the Nemegt ecosystem was probably the 12 metre long, 5 ton tyrannosaur, Tarbosaurus. However, Deinocheirus seemingly has an answer to everything by sacrificing speed for bulk and size, it was probably too big (and bloody hell, those claws) for Tarbosaurus to safely take on.


Deinocheirus in situ. Image credit: Andrey Atuchin.

We also know a few more tricks that Deinocheirus had up its exceedingly large sleeves. Remember those Spinosaurus-like neural spines? They were probably there to support the bulky beer belly, similar to an “asymmetrical cable-stayed bridge“. It also had broadended tip-toes (pedal unguals, to be technical), allowing it not to sink when wading into wetter areas. And those claws? No longer used as lethal disembowlers, but for digging/plant gathering. So Deinocheirus seemingly was perfectly adapted to life on the braided, meandering rivers of the Nemegt ecosystem, unafraid of pesky Tarbosaurus, perfectly content to munch away until its heart (and beer belly) was content, and then waddling to the next patch of river to devour (and P.S Deinocheirus didn’t half walk funny).

And the moral of the story is…

By now, you’ve probably found literally hundreds of grammatical and spelling errors, due to the fact that I’ve been excitedly vomiting words onto my laptop in wave after wave of dino-induced mania. Yes it’s weird, and yes I love it because it’s pretty much me in dinosaur form, but why is this important? You’ll probably see this on IFLS (I F***ing Love Science) in a summary post, with ‘weird fat dinosaur discovered’ alongside ‘cure for cancer found’ and ‘artificial intelligence finally sorted’, making palaeontology, yet again look like the stupid and childish sibling of all the other sciences (e.g. “dino with big nose discovered”, unfortunately not a joke). But this is more than just some crazy guys with beards and stetsons finding a random pile of bones and shouting eureka until Nature finally publishes their work. Oh no. This, as well as many other finds over the last year shows us just how extreme dinosaurs can get. In the past 12 months, we’ve had a new, now with more swimming (TM) Spinosaurus recontruction, Dreadnoughtus, possibly the largest dinosaur ever, as well as long-snouted and pygmy tyrannosaurs. Not to mention feathered ornithischians (R). Dinosaurs have often been regarded as evolutionary extremes, and we’re only now beginning to understand just how these extreme animals lived and evolved.This understanding allows us to further understand evolution works, and how organisms can evolve in various environments and under different conditions.Not only is Deinocheirus a weird and wonderful beast, but when we look at it as a living, breathing animal, rather than a poster-child for all things weird and wonderful, we can begin to further understand  the evolutionary processes involved in theropods, a group which would garner the evolution of an incredibly diverse and successful group of animals, the birds. Deinocheirus exemplifies that palaeontologists, by investigating extremely adapted animals, such as dinosaurs, can further the understanding of the the process of evolution, one of the most important processes on Earth, and just how far it can go, and what wonderfully strange creatures it can help to explain.

So there you have it. Deinocheirus. It sure is a good day to be a palaeontologist.

Taxon of the Week: Limusaurus

As a treat, this week’s Taxon of the Week is a dinosaur. Even better, it’s a dinosaur with very small hands. Despite it’s small hands, it’s managed to cement itself amidst a pretty sizeable debate, yes ladies and and gentle, this week’s TotW is Limusaurus inextricabilis.

The facts

Limusaurus was discovered in 2009 by Xing Xu, a Chinese palaeontologist whose seemingly always discovering a new species of dinosaur (over 30 valid species to date). At around 1.7m in length (roughly the size of a large-ish dog), Limusaurus was far from the biggest and most exciting looking new dinosaur of 2009, however, it was certainly a bit weird:

  • For starters it’s the first Asian ceratosaur ever described. Yes, you heard right a ceratosaur.
  • For your main course, it’s herbiverous.
  • To finish off with dessert, it’s got a beak.
Limusurus. Not your average ceratosaur.

Limusurus. Not your average ceratosaur.

True, whilst indeed not your average ceratosaur (or for that matter, theropod) such traits aren’t that weird in primarily carniverous clades. Within Theropoda, there’s many secondarily herbiverous taxa, incl. everyone’s favourite weirdo taxon, the therizinosaurs. Let’s also not forget the well known beaked herbiverous theropods, ornithomimosaurs. Oh, and did you know crocodylomorphs had a crack at beaks and herbivory (of course they did). Even though I keep harping on about its small hands, for frak’s sake, just take a look at alvarezsaurs (with even more pathetic arms than T. rex). So why exactly am I taking the time to blog about Limusaurus?

Mononykus trying, the meme that couldn't be due to it's preposterously pathetic forelimbs. Hastily drawn by me.

Mononykus trying, the meme that couldn’t be due to it’s preposterously pathetic forelimbs. Hastily drawn by me.

A debate as simple as 1, 2, 3

If you’re a fan of dinosaurs/palaeontology then you should be aware that birds evolved from theropod dinosaurs. News flash: this isn’t new. This notion really started to gain ground after seminal work by John Ostrom in the late 1960s/early 1970s (including that famous drawing of the ‘naked Deinonychus‘ as Richard likes to call it) who noted a lot of avian-like features in Deinonychus. On top of that, palaeontological records show multiple transitional forms between smaller theropods and birds (e.g. the ever eminent Archaeopteryx), and even some of the larger theropods show avian affinities (e.g. the cranial pneumatic sinuses found in Alioramus). Those are only a select few pieces of evidence that have made the evolutionary link between birds and theropods almost undeniable, there’s a so many more, it’s astounding (incl. inferred behaviour, such as avian sleeping positions in theropods: Xu & Norell 2004, and apparent egg brooding behaviour in Oviraptor: Norell et al. 1995). Watch the video if you need more peer reviewed proof that dinosaurs (even if they did look a bit like birds) were awesome. Try and show a little respect.

However, there’s always new discoveries that just love to get people arguing. The issue revolves around digit homology/identity. Essential, theropods (via evolution) ‘lost’ two fingers (digits) to arrive at the three-fingered hand seen in most theropods (aside from the aforementioned ‘weird taxa’, who lost more than 2). The same is true for birds. However, the debate revolves around which digits are lost, and which 3 form the fingers of the hand. In tetanurans (essentially the more advanced theropods, and by extension birds), it has long been thought that digits IV and V were lost, leaving a three-fingered hand consisting of digits I, II and III. Now, you’d expect birds, by being derived tetanurans to have this digital formula.  Well that would be nice wouldn’t it. Unfortunately the question of I,II,II or II,III,IV in modern birds has been debated for a very long time. New evidence in the mid-late 1990s from developmental and genetic studies showed us that the three digits of the avian hand actually developed from digits II, III and IV. Gasp, a spanner in the works!

This new evidence was then used (rather wrongly) to attempt to oppose the hypothesis that birds evolved from dinosaurs (Feduccia 2002). While I agree, the 90s developmental evidence from modern birds creates some novel evolutionary dynamics to investigate, it cannot be used to deny the whole host of other evidence that links dinosaurs to birds. Following on from the developmental studies, genetic studies in the early 2000s showed that during the ontogeny of some birds, the digit identity would change from the initial II,III,IV to I,II,III. This led to the occurrence of the ‘Frame Shift’ hypothesis, which suggests that certain genetic pathways associated with dinosaur/avian digit identity allow for ‘rapid’ changing of digit homology throughout dinosaurian/avian evolution (at it’s core, and that’s a very simplified summary). Not to be bogged down by detail (genetics isn’t my strong suit), developmental geneticists thought they’d cracked it, and that the change in digit identity over avian/dinosaurian evolution was likely to have been caused by these frame shifts.

Feduccia's (2002) argument in a nutshell.

Feduccia’s (2002) argument in a nutshell.

Enter Limusaurus. So, finally, we come to Limusaurus’ role in all of this. In 2009, Xu et al. looked at Limusaurus’ small hands and went “you know what, that’s a reduced digit I” (NOT ACTUAL QUOTE), which makes Limusaurus’ digit identity II, III, IV. As we discovered right at the start of this article (before the I made my lack of genetics knowledge crystal clear), Limusaurus is a ceratosaur, which isn’t a tetanuran, but a more primitive theropod, meaning that the II,III,IV digit identity may well be shared by most/all tetanurans, with Limusaurus representing an intermediate of sorts. Thus Xu et al. state that the digit identity of Limusaurus is more in favour of a slower, stepwise acquisition of the digit identity seen in advanced tetanurans, and eventually birds. But, as the famous saying goes, you know what small hands means…(small gloves?)

That’s right, a big controversy.

If you're confused (don't worry, so am I), this may help.

If you’re confused (don’t worry, so am I), this may help.

The small gloves are off

The Xu et al. (2009) caused a fairly serious debate, with authors such as Vargas et al. arguing that the digit condition seen in Limusaurus is derived, and based on developmental and genetic work that they (Vargas et al.) carried out, suggest that faster genetic shifts occurred in the evolution of birds. Xu et al. quickly responded (and quoted  Arthur Conan Doyle in a somewhat dramatic conclusion) and argued that the shift proposed by Vargas is not likely when the digit (and manus) morphology of fossil tetanurans is considered.

I’d sincerely like to end this post with a succinct conclusion, saying that the debate has, over the last few years been wrapped up. However, such large debates in palaeontology, due to the very nature of our field (i.e. everything we love is dead) are rarely fully resolved. This case is no exception. Researchers from Yale (Bever et al. 2011) and other top world universities have stated time and time again that the frame shift hypothesis is still viable in the context of avian evolution, and in a recent summary by Xu and Mackem, Xu is not so sure, saying neither hypothesis has evidence to topple the other. Not one for revelling in an unnecessarily depressing ending (*coughs* Firefly) I’ll leave you with this: yes, we can’t always find all the answers to big questions in palaeontology and evolution, but by creating a synergistic relationship between palaeontology and biology (genetics, evo devo etc.), future discoveries in both fields are sure to shed some light on even the biggest of debates.

If you’d like to read more on this subject, and weren’t put off by my murdering of the genetics side of things, then I’d highly recommend the aforementioned Xu & Mackem (2013) paper for a recent summary of the field (see references below, it’s in bold).


Xu, X. et al. (2009). A Jurassic ceratosaur from China helps clarify avian digit homologies. Nature 459, 940-944.

Xu, X. & Mackem, S. (2013). Tracing the Evolution of Avian Wing Digits. Current Biology 23, R538–R544 (and references therein).

Bever, G., S. et al. (2011). Finding the frame shift: digit loss, developmental variability, and the origin of the avian hand. EVOLUTION & DEVELOPMENT 13:3, 269–279.

Vargas, A.O., Wagner, G.P. & Gauthier, J.A. in Nature Proceedings (2009).

Vargas, A.O. & Wagner, G.P. Frame-shifts of digit identity in bird evolution and Cyclopamine-treated wings. Evolution & Development 11, 163-169 (2009).

Young, R. L. et al. (2011). Identity of the avian wing digits: problems resolved and unsolved. Dev Dyn. 2011 May;240(5):1042-53.

Taxon of the Week: Beelzebufo.

Yet again, Richard and I are falling behind on delivering on the blog front. For that, we apologise. The next 7 days (hopefully) should bring numerous posts to make up for lost time, including an opinion piece!

Anyway, on with the show. If you follow palaeontological news in any sense, then you’ll probably have heard about a new marine reptile called Atopodentatus. If you haven’t heard of Atopodentatus, imagine if you will the offspring of a basal sauropterygian, Predator, and Cthulu that potentially could have filter fed. Or, you could just check out Brian Switek’s well written Atopodentatus article (with pretty pictures). That’s right, this week we’re going against the grain, and focusing in on a big Cretaceous amphibian, that’s made for a big controversy. I assure you, it’s going to be ribbeting.

Big facts: “we’re gonna need a bigger pond”.

This week, our TotW is Beelzebufo ampinga. Before we knuckle down and attempt to remove the f(r)og from the controversy, let’s get down to the basics. B. ampinga was discovered in 2007 by a team from Stony Brook University from the Maevarano Fm, Madagascar, the remains dated to 70-65Ma (late Cretaceous). The initial paper had little to work with, as the holotype only consists of a few cranial elements, with a few vertebrae, a urostyle and a tibiofibula. However, even with such few remains, the initial size estimates for Beelzebufo are astonishing: with a length of over 40cm, and its head alone estimated at half that in width (20cm!). This immediately bestows Beelzebufo with the crown of the largest frog to ever have lived. Beelzebufo was initially placed within the Ceratophryinae (the common horned frogs), which is unusual and is the basis of most of the controversy surrounding B. ampinga (more on that later). Due to it’s phylogenetic position, Beelzebufo has hyperossification in the skull, stabilising connections between the upper jaw and the skull, a huge mouth, oh, and sharp teeth. What does this mean? Well, like all other ceratophyrines Beelzebufo probably was carniverous, and by being so large, many agree that it would have been an ambush predator of small vertebrates, such as small/baby dinosaurs. So a frog that eats dinosaurs, no wonder they called it Devil Frog.


The holotype of Beelzebufo. Bones that were discovered in white. Modified from Evans et al. (2008).

Earlier in 2014, Beelzebufo was back. This time a (open access!) paper was published, showing off many new specimens of the Devil Frog. These specimens (64 since 2007) were far more complete than the original published findings, and have shown us that it was far weirder than previously imagined. It also gave us a more complete picture of B. ampinga as an organism and as a species. By looking at the squamosal of different individuals it became apparent that there was a lot of intraspecific variation present in B. ampinga, with a size difference of up to 20% present between certain individuals. This has found to be caused by different individuals having different bone growth rates and patterns. Now, the simplest explanation is everyone’s favourite, sexual dimorphism (in modern ceratophryines, the females are larger than males in 90% of cases). However, studies on extant frogs have shown that bone growth patterns and maturation times in anurans can be dependent on other factors such as seasonal food and water availability, as well as temperature.



Another intriguing fact is that Madagascar at that time was seasonal arid, with dry periods being especially water-sparse. So how does a large amphibian like Beelzebufo cope? Again, material from the 2014 publication (Evans et al. 2014) helps us to possible answer this. Hyperossification (especially in the skull) is prevalent in Beelzebufo. This is apparent in the initial discovery also, but combine this with evidence from Evans et al. (2014), features such as the loss of a tympanic membrane, tall neural spines and cranial exostosis go some way towards confirming that Beelzebufo was a burrower. Thus enabling it to escape desiccation during extreme dry spells. Not only did Evans et al. (2014) provide us with a wealth of new information on an important fossil anuran, but it also came with some fantastic 3D skeletal morphological reconstructions.


The aforementioned pretty digital reconstruction. Also, those posterolateral flanges, phwoar. Modified from Evans et al. (2014).

Big controversy

As has been eluded to, Beelzebufo caused a big splash. Evans et al. (2008) placed B. ampinga within Ceratophryinae, a subfamily found only in South America, based on mainly cranial characters and a supporting phylogenetic analysis. Evans commented that the discovery of a late Cretaceous ceratophryine in this area is ‘unexpected’. Indeed, if you look at the palaeobiogeography it still looks squiffy, with the Madagascar-Seychelles-India tectonic plate losing contact from South America 120 million years-ago. However, even this is debated. Multiple lines of evidence now suggest some land-link was present between South America and Madagascar, including many molecular studies (ratite birds, iguanin lizards et al.) and physical similarities present between South American and Madagascan dinosaurs, crocodyliforms and mammal. So a ceratophryine from the Cretaceous of Madagascar isn’t so crazy, right?

Wrong. Two years after the initial Evans publication Ruane et al. (2010) carried out rigorous testing on the phylogenetic position of Beelzebufo. In Evans et al. (2008), it was apparently established that B. ampinga was a crown-group Ceratophryinae, and a sister taxon to the living Ceratophrys. Ruane et al. had a big problem with this reasoning, stating that the relationship between Beelzebufo and Ceratophrys is supported by 1 out of 81 characterstics, support values for the relationship between these two were also low in the phylogenetic study. Ruane et al. (2010) used molecular phylogenies (with data from extant anurans) in tandem with Beelzebufo, using it as a calibration point, to calculate the timings of the emergence of the MRCA (most recent common ancestor) of modern ceratophryines. With Beelzebufo used in this way, the emergence time of the ceratophryine MRCA was way before the times calculated by other studies, using well established datasets.Ruane et al. came to the conclusion that contrary to Evans’ initial hypothesis, Beelzebufo was a) not a sister taxon of Ceratophrys or b) definitely not a crown-group ceratophryine. However, Ruane et al. don’t really give us more than that, apart from saying it might be some sort of stem-group ceratophryine or a crown-group Hyloidea (a superfamily). If were throwing ballpark ideas around for the phylogenetic position of Beelzebufo, then I’m gunning for a stem-group Hynerian.


Dominar Rygel XVI, a fine example of Hynerian for all those nerds who don’t watch Farscape.

The Evanpire Strikes back

Not one for lying down Evans et al. (2014), now armed with many more specimens than last time around, resurrected the phylogenetic controversy surrounding B. ampinga. In the 2014 publication, the phylogenetic position of Beelzebufo was restored to the initial hypothesis, stating that Beelzebufo was indeed a crown-group ceratophryine, with this relationship holding true even when different tree-making steps and calibration points were used. Evans et al. also deal with many of the issues raised by Ruane et al. For example, Ruane et al. argue that the low support values between Beelzebufo and Ceratophrys indicate that they might not be sister taxon (and hence Beelzebufo isn’t part of the ceratophryine crown-group). Yet Evans et al. point out that support values are low even in studies that solely consider extant ceratophryids.

The fuzzy phylogenetic positioning given to Beelzebufo by Ruane et al. (maybe stem-group this, or crown-group that) is put under fire by Evans et al. I’ve already said that the Cretaceous MRCA emergence time is Ruane’s main argument against B. ampinga as a crown-group ceratophryine, however what I’ve not yet said (and what Evan’s et al. 2014 love to point out) is that Ruane et al. almost positively place another mid-late Cretaceous frog, Baurubatrachus as a ceratophryid (crown and/or stem), which still means that the MRCA is somewhere in the Cretaceous. Evans was quick (p.54) to point out that Ruane et al. at this point were being somewhat hypocritical in this regard. Finally, Evans points out that the hyperossification present in Beelzebufo is also present in living ceratophryids, another compelling line of evidence in support of the crown-group hypothesis. Despite being confident in their findings, Evans et al. still give a passing mention of the notion that hyperossification (and other ceratophryid characters) may be present due to convergent evolution, however, for the time being (and to conclude!) Beelzebufo appears to be (for the time being) a crown group ceratophryid. *Sighs*.

You've made it past the long-winded bit. Well done, have a pretty picture.

You’ve made it past the long-winded bit. Well done, have a pretty picture.

Big importance

Well done, you’ve made it through a very poorly written account of the s**t-storm which is the phylogenetic positioning of Beelzebufo. By this point, you’ve probably seen the words crown, stem, Beelzebufo, et al. and ceratophryine/d/inae enough to last multiple lifetimes, so then, why should we care about Beelzebufo and it’s position within the ‘tree of life’. You should care for two reasons: 1) the timing of the emergence of ceratophryids, 2) the importance of correctly using fossils in phylogenetic studies.

All glory to the importance of Beelzebufo. You will obey.

All glory to the importance of Beelzebufo. You will obey.

You should remember that the biogeography of Madagascar in the Cretaceous creates problems for the ceratophryid hypothesis. Ali et al. (2008, 2009 2011) have recently noted that land bridges between Madagascar and South America were severed by 115-112Ma. If this is true, (and presuming Beelzebufo and undiscovered others didn’t raft across the seaways, which is actually a large presumption, giving the thick skinned Beelzebufo would weather the salty waters well, for a frog) this pushes the emergence time of ceratophryids to before these dates. This is again contrary to studies that have found the emergence times of crown-group Hyloideans (a superfamily if you remember) to be around 88Ma. As has been stated many times of this blog, any fossil, even an incomplete specimen, if found in the certain places at certain times can cause palaeontologists/phylogeneticists/biologists to have to seriously reconsider the state of the field.

This leads nicely onto the second reason why Beelzebufo is important. Hypocritical arguments aside, Ruane et al., using Beelzebufo as an example, shows how any study using fossils as certain anchor points in phylogenetic studies MUST look closely at the phylogenetic position (and the evidence behind it) of the fossil taxa, and decide if this is appropriate. Any mistakes when involving fossil taxa in these studies affects conclusions with wide reaching implications, such as the divergence/emergence times of certain, and sometimes, very large clades.

And finally, Beelzebufo kinda looks like Hypno Toad. That’s pretty rad.


  • Evans, S. E. et al. (2008). A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proc. Natl. Acad. Sci. USA 105: 2951–2956.
  • Evans S. E. et al. (2014). New Material of Beelzebufo, a Hyperossified Frog (Amphibia: Anura) from the Late Cretaceous of Madagascar. PLoS ONE 9(1): e87236. doi:10.1371/journal.pone.0087236
  • Ruane S. et al. (2011). Phylogenetic relationships of the Cretaceous frog Beelzebufo from Madagascar and the placement of fossil constraints based on temporal and phylogenetic evidence. J Evol Biol 24: 274–285.
  • Ali J. R., Aitchison J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through end Eocene (166–35 Ma). Earth-Science Reviews 88: 145–166.
  • Ali J. R., Aitchison J. C. (2009). Kerguelen Plateau and the Late Cretaceous southern-continent bioconnection hypothesis: tales from a topographical ocean. J Biogeogr 36: 1778–1784.
  • Ali J. R., Krause D. W. (2011). Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. J Biogeogr 38: 1855–1872.

Taxon of the Week: Tiktaalik

Following all of the giant-rauisuchian based excitement of last week’s TOTW, I’ve decided to calm it down a bit by looking at an unassuming fish.  This particular unassuming fish has been in the news recently, and illustrates a transition without which there would be no Postosuchus, no mammals and (perhaps worst of all) no ‘Dinosirs’.  The fish of which I speak is, of course, the Devonian tetrapodomorph Tiktaalik roseae, but before we look at it closely, let’s have a look at the bigger evolutionary picture into which it fits.

Vertebrates that live on land are known as tetrapods, and all possess (or at least their ancestors possessed) four limbs with digits: amphibians, lizards, crocodiles, birds and mammals are all modern tetrapods. Despite their many obvious differences from what you’d typically think of as a ‘fish’, tetrapods are actually the largest group of lobe-finned fish, or sarcopterygians, named for their fins’ fleshy bases.  The only other modern groups of sarcopterygian are lungfish and the famous ‘living fossil’ coelacanth.

An African Lungfish: note fleshy-based lobe fins (from

An African Lungfish: note fleshy-based lobe fins, as compared to the rayed fins of your goldfish. (from

The most obvious difference between tetrapods and other fish is that the latter are aquatic and the former mainly terrestrial (with the exception of groups that went back into water, like whales and icthyosaurs).  At some point during the evolution of tetrapods they switched from an aquatic lifestyle to a terrestrial one, and this pretty drastic transition is of great interest to palaeontologists.   Originally pictured as being a case of fish struggling onto land and then evolving limbs, in recent(ish) years very early tetrapods from the Late Devonian (~365 Mya), such as Acanthostega and Ichthyostega, have changed this view.  These fossils have four limbs with digits, but appear to be fully aquatic, suggesting that the tetrapod body plan evolved in water first, only later proving handy (pun obviously intended) on land.

Acanth tol.web

Acanthostega having a swim with its digit-y limbs (from tol.web).

Various fish-like animals have been described that have body plans somewhere between these early aquatic tetrapods and the ancestral fishy form, and which are more closely related to tetrapods than the next closest group of sarcopterygians, the lungfish.  These animals are known as ‘tetrapodomorphs’, and show an evolutionary trajectory towards air breathing and a four-finned body plan, while still retaining fish-like characters such as gills and fin rays.  It has been suggested that this was as a result of them living in shallow rivers during the oxygen-poor Late Devonian, where being able to breathe air as well as oxygen dissolved in water would have been advantageous, as would being able to navigate shallow, relatively predator free, water.


A phylogeny of selected tetrapodomorphs and tetrapods, showing the change in body plan from ‘fish-like’ to ‘tetrapod-like’. (adapted from Daeschler et al, 2006)

Enter TiktaalikTiktaalik is something of a celebrity amongst tetrapodomorph fish. Described in 2006 from fossils found on Ellesmere Island in Nunavut, Canada, its name means ‘Burbot’ in Inuktitut.  It was subsequently popularised by one of its discoverers, Neil Shubin, in his book ‘Your Inner Fish’ (recommended), and is even the star (or possibly victim) of its own song on Youtube.  This stardom is well deserved, as Tiktaalik gives us a good deal of interesting information on the water-land transition.

A burbot reacts with indifference to the news that a tetrapodomorph has been named after it.

A burbot reacts with indifference to news of its namesake.

The original fossil material of Tiktaalik consisted of a pretty spectacularly articulated front half of the animal, possessing a number of interesting features.  The animal was pretty ‘fish-like’, but with some tetrapod-like characters, such as large shoulders bones and pectoral fins with wrist-like joints, a neck, and a robust ribcage.  These qualities, together with the shallow river environment in which it appears to have lived, led to the suggestion that it might have used its robust fore-fins to prop it up in ‘press-ups’, lifting its head (with the help of its neck) above water to breathe.  While there was no knowledge of the back half of Tiktaalik itself,  the small pelves (plural of pelvis) of other tetrapodomorph fossils like Panderichthys, led to a ‘front-wheel drive’ picture of tetrapodomorphs moving largely with the fore-fins, with  ‘four-wheel drive’ locomotion, with all four fins (or limbs), being a tetrapod innovation.

Tiktaalik wiki

Front-wheel drive Tiktaalik (from wikipedia)

Earlier this week however, the back half of Tiktaalik (or at least some of it) was described, and it transpires that this picture of exclusively ‘front wheel drive’ tetrapodomorphs is incorrect.  Tiktaaliks pelvis and parts of the hind limb were recovered, and it turns out that its hind-fins were as large as its fore-fins, with a fairly good range of movement.  While still compatible with their function as ‘props’ mentioned above, this also suggests that it would have been able to do more in terms of fin-based movement, with the possibility of underwater gaits, like the ‘walking’ seen in African lungfish.  It also changes our picture of the evolution of limbs, suggesting that tetrapodomorphs became ‘four-wheel drive’ before the evolution of tetrapods.

Tiktaalik comparison

The change in beefiness of hind-quarters/rear fins in Tiktaalik from the original description, above, to the recent paper, below (images from Daeschler at al 2006 and 2014 respectively)

While this recent information has changed our picture of Tiktaalik, it just adds to its importance as a source of information on the water land-transition.  This unassuming Devonian fish, along with various other fishy friends, helps illustrate that many of the changes that we associate with living on land, such as breathing air and having limbs, actually evolved as adaptations to aquatic life.  This transition also acts as a prime example of the mosaic nature of evolution: tetrapods didn’t evolve gradually from a fish-like form to a tetrapod-like form, but instead evolved tetrapod-like characters piecemeal while retaining ‘primitive’ ones. This mosaic theme is one that comes up time and time again in evolution, and is one that we’ll be discussing in future blog posts.

Some more Tiktaalik revelling in all their newly reconstructed glory.

Some more Tiktaalik revelling in all their newly reconstructed glory (image from

Further reading