Cartorhynchus: helping ichthyosaurs crawl back into the mainstream.

Over the last 12 months or so, I’ve been researching ichthyosaurs for my masters project, and since then, I’ve been working on publishing my results. As such, I’ve learnt a fair bit of ichthyosaur palaeobiology and systematics. I’m no expert, but at this early stage in my academic career, I can say that at the moment, ichthyosaurs (specifically ichthyosaur endocranial anatomy) are my ‘specialisation(s)’, perhaps even making me an ichthyo-sir (heh). To this end, Motani et al.’s recent publication in Nature was massive news for ichthyosaur palaeobiologists. And that’s why it’s got its own little blog post.

What’s all the fuss about then? This year (2014) marked the anniversary of the 200 years since the first appearance of ichthyosaurs in scientific literature, and ichthyosaurs are closely associated with palaeontological celebrities, both historical (Mary Anning) and rather more recent (Alfred Romer). In those 200 years, we’ve learnt a lot about ichthyosaurs, and whilst they’re not ‘some kind of fish-lizard’, they are diapsid reptiles that were some of the first tetrapods to evolve a thunniform (fish/tuna-like) bodyplan, which aided them in their marine adventures. We know what colour some of them were thanks to melanosomes (Lindgren et al. 2014), we also know that they gave birth to live young, like mammals and some sharks do. We have exceptional fossils of ichthyosaurs actually giving birth, and others with amazing detailed and undisturbed soft tissue outlines. However despite all these amazing discoveries, we still don’t know a whole lot about two major aspects of ichthyosaur palaeobiology: their precise biomechanical function (we can’t create fancy 3D digital models due to the lack of 3D specimens, most ichthyosaur remains are mostly pancake-flat, even the really awesome ones) and perhaps more importantly, how they place in wider diapsid phylogeny.

The miracle of ichthyosaur birth, over 200 million years-ago. Very cool.

The miracle of ichthyosaur birth, over 200 million years-ago. Very cool.

Now before I go any further, it might be a good idea to explain what I mean by diapsid. Diapsida is a group of organisms (more specifically tetrapods) that have two temporal fenestrae (holes) in each side of their heads. Now this is a pretty large group, including archosaurs (dinosaurs, birds and crocs), lizards, snakes and tuataras. So whilst we have some vague idea where ichthyosaurs lie within this pretty large evolutionary tree, we’re not entirely sure. Why? Well because we don’t have transitionary fossils, ichthyosaurs previously (before Motani et al. 2014) appeared in the fossil record as highly adapted marine reptiles, well suited to the marine environment (remember, they look like fishes). So without any hint of which precise group of terrestrial organisms they evolved from, the topic of where ichthyosaurs came from is highly debated. So much in fact that in 2006, a very prominent ichthyosaur worker, Michael Maisch declared that the placement of ichthyosaurs within Diapsida was “…impossible…” (Maisch et al. 2006) without more basal specimens.

The internal phylogeny of ichthyosaurs isn’t a much better state either, with tree topologies changing at every opportunity of the last 10 years or so, threatening to change again when new systematic methods are applied. This again is largely due to the lack of well preserved three-dimensional specimens. But it’s not all doom and gloom, amazingly preserved specimens like those used in Lindgren et al. 2014 have shown us the colour of these ancient fish-dolphins (joke name, please don’t take it seriously), and Fischer et al. 2013’s discovery of Malawania has helped, to some degree, solve the internal phylogeny of at least neoichthyosaurs and ophthalmosaurs (ichthyosaurs from the Jurassic onwards). And obviously, my work on ichthyosaur endocranial and neuroanatomy from an exceptionally three-dimensionally preserved specimen will be hopefully  well received (more on that in the coming months). So it’s not all doom and gloom. But still, ichthyosaurs aren’t exactly the Brangelina of the palaeontological scene, no sir, those celebrity couples occupying all the headlines are dinosaur discoveries such as Deinocheirus and Dreadnoughtus, and the number of ichthyosaur workers isn’t exactly huge.

To my shocked delight, on the afternoon of the 5th of November, 2014 I stumbled upon a fresh new ichthyosauriform, in a Nature paper. Good heavens! Could it be true? Well, of course, other wise I’d have spent the last hour typing madly about ichthyosaurs for no apparent reason. Catorhynchus lenticarpus (‘shortened snout’, ‘flexible wrist’) is a weird, small beast. At first glance, you’d be forgiven for thinking that Catorhynchus wasn’t even a ichthyosaur at all. Well, technically, it isn’t an ichthyosaur at all, it’s an ichthyosauriform.  Catorhynchus comes from the Lower Triassic, approximately 248 million years-ago, and whilst some would call it an ‘ichthyosaur’, the Ichthyosauria (essentially all of the things your properly allowed to call ‘ichthyosaurs’) didn’t occur until later on in the Triassic. So, what the hell is Catorhynchus? Simple, it’s an ichthyosauriform, an ichthyosaur-looking creature which is more closely related to Ichthyosaurus communis than to a hupesuchian? Wait, what the hell are hupehsuchians, and what do they have to do with anything?

Hupehsuchians, think ichthyosaurs but a little more 'vacant' looking.

Hupehsuchians, think ichthyosaurs but a little more ‘vacant’ looking.

Good question. Hupehsuchians are a weird bunch of marine reptiles, who you’d be very much forgiven for calling ichthyosaurs, because well, they look quite a lot like ichthyosaurs. This simple fact has led many researchers to state that ichthyopterygians and hupehsuchians were related, however, there’s been little evidence to really cement this (just because two organisms look the same/have similar features, doesn’t mean they’re closely related. For example birds and bats both have wings, but they evolved powered flight independently and convergent to each other). As I’ve previously said, this is due to the lack of really primitive fossil ‘ichthyosaurs’ as well as our fairly poor understanding of where ichthyosaurs fit relative to other diapsids. However, Catorhynchus has given us a glimmer of hope, enabling us to, for the first time, really start to understand how ichthyosaurs first came about. Now, thanks to Catorhynchus, we think that ichthyosauromorphs (which now includes hupehsuchians) originated in China in the Earliest Triassic, which was a warm tropical archipelago ‘back in the day’. This is interesting, as we know that other groups of marine reptiles, such as sauropterygians (plesiosaurs, pliosaurs et al.) may have also originated in this area at the same time, so Earliest Triassic China may have provided very good conditions to harbour the evolution of many marine reptiles.

Phylogeny of ichthyosauromorphs, modified from Motani et al. 2014.

Phylogeny of ichthyosauromorphs, modified from Motani et al. 2014.

Don’t worry, I’ll stop teasing you now, I’ll actually talk about the fossil for a bit. With a host of unusual features such as really short snout, large flippers and a short body length (the shortest of all ichthyosauromorphs, estimated at a tiny 40 cm) and a really deep lower jaw, Catorhynchus is a weird beast. Yet, despite all these abnormalities, it looks like an ichthyosaur, I mean look at those big eyes! However, it also looks like a juvenile ichthyosaur. For me, and other ichthyosaur workers I’ve spoken to, this is the main reason why people of sceptical about drawing so many big conclusions from Catorhynchus. However, other people (untrustworthy creator of reptileevolution.com) have said that it certainly can’t be an ichthyosaur, and has to be an ‘ichthyosaur-mimic’, because yeah, if it has loads of scientifically diagnostic features of an ichthyosaur the most obvious answer is that it wants you to think it’s an ichthyosaur, just to troll the scientific community, and then years later scream ‘psyche!’ to everyone, you know, because fossils love to mess with us, the jerks.

Catorhynchus fossil from Motani et al. 2014. E represents a  newborn Chaohusaurus, for comparison.

Catorhynchus fossil from Motani et al. 2014. E represents a newborn Chaohusaurus, for comparison.

ANYWAY. I think it’s worth pointing out that it realistically might turn out to be a juvenile, even though Motani et al. do present some evidence that it’s a fully grown adult, for example the forefins of Catorhynchus are almost as long as its skull, a feature found exclusively in adult individuals. However, it’s also worth mentioning that even despite this, Motani et al. don’t completely dismiss the possibility of this specimen being a juvenile. Essentially, I feel it’s best to take this discovery with a pinch of salt until we find a few more specimens of Catorhynchus. Despite this uncertainty, we can be fairly sure that Catorhynchus may have been amphibious. Yeah, that’s right, amphibious and NOT an amphibian. Other articles have said that Catorhynchus is an amphibian, this is incorrect, as Amphibia form their only little group of organisms, which ichthyosauromorphs aren’t part of! However, Catorhynchus is amphibious, i.e. it shares its time between land and water. How do we know this? Well from the fossil, Motani observed that the carpus may have allowed the flipper to bend in a way much like the flippers can bend in seals, and since seals have flippers for limited terrestrial locomotion, it seems likely that this was also the case for the flippers of Catorhynchus. Motani also presents a case for suction feeding in Catorhynchus, which brings the contentious debate of whether other ichthyosaurs fed via suction feeding back to the table.

To summarise Motani and friends have presented the world with a new ichthyosauromorph which, if verified with further specimens, will help us to really start to understand how ichthyosaurs (and perhaps marine reptiles more widely) first evolved, as well as to understand the place of ichthyosauromorphs within Diapsida. And since it was published in Nature, it might turn a few heads, perhaps persuading more people to join the very small field of ichthyosaur of palaeobiology. As always let us know what you think, comment below or Tweet us (or indeed, even Facebook us).

Not only was it amphibious, Catorhynchus was also the most miserable of all the ichthyosauromorphs.

Not only was it amphibious, Catorhynchus was also the most miserable of all the ichthyosauromorphs.

Deinocheirus: why beer-bellies are bad-ass and the importance of being weird

Today started out as a fairly normal day. I overslept thanks to marathonning House late into the night/morning (note: not due to working late/early on my publication, oops), I dragged myself out of bed and into the office. I then, still half-asleep checked Twitter (the morning ritual was well underway) and then suddenly, I displayed both ends of the NedryGrant excitement chart (patent pending) simultaneously. Deinocheirus. It was DeinocheirusDEINO-RUDDY-CHEIRUS! At the moment, I’m in an office full of volcanologists, so no-one understood my excitement (in fact most thought I had some form of disposition, I mean I was practically frothing at the mouth with excitement). I immediately texted Richard and all my other palaeontological friends/colleagues with two words: DEINOCHEIRUS PUBLISHED.

My face on the morning of the 22nd October 2014. (I even laughed like a Dilophosaurus).

Story time

So why was I so stupidly excited? Well, I’m glad you asked. To explain this excitement, our tale begins in 1965. It was July, and the Polish-Mongolian Palaeontological Expedition had stumbled upon a ‘monster’ find. Forelimbs and a shoulder girdle 2.4 metres long belonging to a 70 million-year-old dinosaur with surely the largest forearms of a bipedal animal ever. However, that was all they found. What in the Seven Hells was this magnificent beast? Surely these the arms of some superpredator, akin to Allosaurus or perhaps a mega-Velociraptor? Deinocheirus mirificus was (‘unusual horrible hand’) was ‘born’. For seven-years, this was the most likely explanation. In this time, palaeontologists and members of the public alike went wild with fantastical recontructions of this new and wacky beast, some even going as far as noting that the arms were used much like those of a giant sloth. Alas, in 1972 John Ostrom (the guy responsible for revolutionising the way we think about dinosaurs in relation to birds in the 60s) noted that the bones in the forearm of Deinocheirus appeared similar to those found in the ornithomimosaurs, a group of secondarily-herbiverous theropod dinosaurs very similar to modern ostriches. This agreed with the sentiments of the team that initially discovered Deinocheirus, so it was settled, the beast was in fact an ornithomimosaur. Mystery solved. Right?

Dem Claws.

Dem Claws.

Unfortunately not. Fast forward a little over 40 years later to October 2013, and we still hadn’t found any more remains of the all-too mysterious Deinocheirus. That was all to change. At the SVP 2013 Symposium (one of the biggest annual events in palaeontology) there were hushed, exciting whisperings of new Deinocheirus material (apparently, I couldn’t afford to go). And then, a speaker emerged and confirmed it, Deinocheirus was back, the mystery was apparently solved. New material had been discovered and we now had a 95% complete skeleton to work with. However, this wasn’t fully shown at SVP, and the entire palaeontological community had to wait with baited breath until the work was published. One of the greatest mysteries of 20th and 21st century dinosaur palaeontology had been solved, but we had to wait. It was agonising. Personally, I grew up enthralled with the mystery of Deinocheirus as did many palaeontologists, both young and old, so to be kept in the dark like this was painful.

The Big Reveal

Fast forward again, exactly (pretty much) to a year later. Late October 2014. A dreary-eyed, 20-something-year-old palaeo grad-student is almost hyperventilating over an image he found on Twitter. Ladies and gentlemen, Deinocheirus has landed. And bloody hell if it isn’t the weirdest thing we’ve ever seen.

Deinocheirus-990x980

The Beer-Bellied weirdo in all it’s glory. Deinocheirus mirificus.

Mystery Solved

Standing almost as tall as T. rex, and weighing in at a hefty 6 tonnes Deinocheirus is the biggest ornithomimosaur to dateSo it was big, no biggie right (heh)? Wrong, in addition to it’s monstrous size it’s also (and I might have already said this) bloody weird. With a really deep lower jaw, no teeth, huge forearms, relatively small hindlimbs, a big old “beer belly” (the best description of dinosaur’s anatomy ever, thanks Tom Holtz!) and tall neural spines (similar to those seen in SpinosaurusDeinocheirus sure is different to the ‘typical’ ornithomimosaurian body plan of Galimimus, with long legs and many other features that suggested it was a fast runner. Quite the opposite, Deinocheirus was a big, sluggish brute with a huge appetite. After 50 years, the mystery of Deinocheirus seems to be solved then, it’s a incredibly odd looking, slow moving, bulky, T. rex sized, beer-bellied behemoth. Myth busted, right?

Skeletal reconstruction of Deinocheirus mirificus. Modified from Lee et al. 2014.

Skeletal reconstruction of Deinocheirus mirificus. Modified from Lee et al. 2014.

Again, wrong. These new specimens are that good that we can already begin to hypothesise how Deinocheirus actually lived out it’s seemingly odd, slow lifestyle. Deinocheirus was discovered in the Nemegt Formation, a deposit which is 70 Million years-old (Late Cretaceous), and was an ecosystem similar to that of the Okavango delta today. First off, over 1400 gastroliths were present, probably used to aid in digestion of food, (mainly plants) making up for the lack of teeth. The morphology of it’s jaws and its broad bill (similar to those found in hadrosaurs and ducks) suggest that certain muscles associated with biting were small, meaning that Deinocheirus probably ate soft (and possibly water-dwelling) plants. But there wasn’t just some stones in that big beer belly, no sir! Evidence of a half-eaten fish was found as well, indicating that Deinocheirus was no means a fussy eater, and probably a ‘megaomnivore’ eating pretty much anything it could get it could swallow. This seems to fit well, especially when you consider Deinocheirus’ place in the Nemegt ecosystem, as generalist ‘all you can eat’ type deal (finally, a dinosaur I can relate to) it wouldn’t be in such harsh competition with the other herbiverous dinosaurs in the area that mostly ate plant matter from trees. However, not only do you need to outcompete you friendly neighborhood herbivores to keep on truckin’ in a Cretaceous world, you also need to be not eaten yourself. The main threat in the Nemegt ecosystem was probably the 12 metre long, 5 ton tyrannosaur, Tarbosaurus. However, Deinocheirus seemingly has an answer to everything by sacrificing speed for bulk and size, it was probably too big (and bloody hell, those claws) for Tarbosaurus to safely take on.

Deinocheirus_fin_colcorr_lres

Deinocheirus in situ. Image credit: Andrey Atuchin.

We also know a few more tricks that Deinocheirus had up its exceedingly large sleeves. Remember those Spinosaurus-like neural spines? They were probably there to support the bulky beer belly, similar to an “asymmetrical cable-stayed bridge“. It also had broadended tip-toes (pedal unguals, to be technical), allowing it not to sink when wading into wetter areas. And those claws? No longer used as lethal disembowlers, but for digging/plant gathering. So Deinocheirus seemingly was perfectly adapted to life on the braided, meandering rivers of the Nemegt ecosystem, unafraid of pesky Tarbosaurus, perfectly content to munch away until its heart (and beer belly) was content, and then waddling to the next patch of river to devour (and P.S Deinocheirus didn’t half walk funny).

And the moral of the story is…

By now, you’ve probably found literally hundreds of grammatical and spelling errors, due to the fact that I’ve been excitedly vomiting words onto my laptop in wave after wave of dino-induced mania. Yes it’s weird, and yes I love it because it’s pretty much me in dinosaur form, but why is this important? You’ll probably see this on IFLS (I F***ing Love Science) in a summary post, with ‘weird fat dinosaur discovered’ alongside ‘cure for cancer found’ and ‘artificial intelligence finally sorted’, making palaeontology, yet again look like the stupid and childish sibling of all the other sciences (e.g. “dino with big nose discovered”, unfortunately not a joke). But this is more than just some crazy guys with beards and stetsons finding a random pile of bones and shouting eureka until Nature finally publishes their work. Oh no. This, as well as many other finds over the last year shows us just how extreme dinosaurs can get. In the past 12 months, we’ve had a new, now with more swimming (TM) Spinosaurus recontruction, Dreadnoughtus, possibly the largest dinosaur ever, as well as long-snouted and pygmy tyrannosaurs. Not to mention feathered ornithischians (R). Dinosaurs have often been regarded as evolutionary extremes, and we’re only now beginning to understand just how these extreme animals lived and evolved.This understanding allows us to further understand evolution works, and how organisms can evolve in various environments and under different conditions.Not only is Deinocheirus a weird and wonderful beast, but when we look at it as a living, breathing animal, rather than a poster-child for all things weird and wonderful, we can begin to further understand  the evolutionary processes involved in theropods, a group which would garner the evolution of an incredibly diverse and successful group of animals, the birds. Deinocheirus exemplifies that palaeontologists, by investigating extremely adapted animals, such as dinosaurs, can further the understanding of the the process of evolution, one of the most important processes on Earth, and just how far it can go, and what wonderfully strange creatures it can help to explain.

So there you have it. Deinocheirus. It sure is a good day to be a palaeontologist.

Taxon of the Week: Limusaurus

As a treat, this week’s Taxon of the Week is a dinosaur. Even better, it’s a dinosaur with very small hands. Despite it’s small hands, it’s managed to cement itself amidst a pretty sizeable debate, yes ladies and and gentle, this week’s TotW is Limusaurus inextricabilis.

The facts

Limusaurus was discovered in 2009 by Xing Xu, a Chinese palaeontologist whose seemingly always discovering a new species of dinosaur (over 30 valid species to date). At around 1.7m in length (roughly the size of a large-ish dog), Limusaurus was far from the biggest and most exciting looking new dinosaur of 2009, however, it was certainly a bit weird:

  • For starters it’s the first Asian ceratosaur ever described. Yes, you heard right a ceratosaur.
  • For your main course, it’s herbiverous.
  • To finish off with dessert, it’s got a beak.
Limusurus. Not your average ceratosaur.

Limusurus. Not your average ceratosaur.

True, whilst indeed not your average ceratosaur (or for that matter, theropod) such traits aren’t that weird in primarily carniverous clades. Within Theropoda, there’s many secondarily herbiverous taxa, incl. everyone’s favourite weirdo taxon, the therizinosaurs. Let’s also not forget the well known beaked herbiverous theropods, ornithomimosaurs. Oh, and did you know crocodylomorphs had a crack at beaks and herbivory (of course they did). Even though I keep harping on about its small hands, for frak’s sake, just take a look at alvarezsaurs (with even more pathetic arms than T. rex). So why exactly am I taking the time to blog about Limusaurus?

Mononykus trying, the meme that couldn't be due to it's preposterously pathetic forelimbs. Hastily drawn by me.

Mononykus trying, the meme that couldn’t be due to it’s preposterously pathetic forelimbs. Hastily drawn by me.

A debate as simple as 1, 2, 3

If you’re a fan of dinosaurs/palaeontology then you should be aware that birds evolved from theropod dinosaurs. News flash: this isn’t new. This notion really started to gain ground after seminal work by John Ostrom in the late 1960s/early 1970s (including that famous drawing of the ‘naked Deinonychus‘ as Richard likes to call it) who noted a lot of avian-like features in Deinonychus. On top of that, palaeontological records show multiple transitional forms between smaller theropods and birds (e.g. the ever eminent Archaeopteryx), and even some of the larger theropods show avian affinities (e.g. the cranial pneumatic sinuses found in Alioramus). Those are only a select few pieces of evidence that have made the evolutionary link between birds and theropods almost undeniable, there’s a so many more, it’s astounding (incl. inferred behaviour, such as avian sleeping positions in theropods: Xu & Norell 2004, and apparent egg brooding behaviour in Oviraptor: Norell et al. 1995). Watch the video if you need more peer reviewed proof that dinosaurs (even if they did look a bit like birds) were awesome. Try and show a little respect.

However, there’s always new discoveries that just love to get people arguing. The issue revolves around digit homology/identity. Essential, theropods (via evolution) ‘lost’ two fingers (digits) to arrive at the three-fingered hand seen in most theropods (aside from the aforementioned ‘weird taxa’, who lost more than 2). The same is true for birds. However, the debate revolves around which digits are lost, and which 3 form the fingers of the hand. In tetanurans (essentially the more advanced theropods, and by extension birds), it has long been thought that digits IV and V were lost, leaving a three-fingered hand consisting of digits I, II and III. Now, you’d expect birds, by being derived tetanurans to have this digital formula.  Well that would be nice wouldn’t it. Unfortunately the question of I,II,II or II,III,IV in modern birds has been debated for a very long time. New evidence in the mid-late 1990s from developmental and genetic studies showed us that the three digits of the avian hand actually developed from digits II, III and IV. Gasp, a spanner in the works!

This new evidence was then used (rather wrongly) to attempt to oppose the hypothesis that birds evolved from dinosaurs (Feduccia 2002). While I agree, the 90s developmental evidence from modern birds creates some novel evolutionary dynamics to investigate, it cannot be used to deny the whole host of other evidence that links dinosaurs to birds. Following on from the developmental studies, genetic studies in the early 2000s showed that during the ontogeny of some birds, the digit identity would change from the initial II,III,IV to I,II,III. This led to the occurrence of the ‘Frame Shift’ hypothesis, which suggests that certain genetic pathways associated with dinosaur/avian digit identity allow for ‘rapid’ changing of digit homology throughout dinosaurian/avian evolution (at it’s core, and that’s a very simplified summary). Not to be bogged down by detail (genetics isn’t my strong suit), developmental geneticists thought they’d cracked it, and that the change in digit identity over avian/dinosaurian evolution was likely to have been caused by these frame shifts.

Feduccia's (2002) argument in a nutshell.

Feduccia’s (2002) argument in a nutshell.

Enter Limusaurus. So, finally, we come to Limusaurus’ role in all of this. In 2009, Xu et al. looked at Limusaurus’ small hands and went “you know what, that’s a reduced digit I” (NOT ACTUAL QUOTE), which makes Limusaurus’ digit identity II, III, IV. As we discovered right at the start of this article (before the I made my lack of genetics knowledge crystal clear), Limusaurus is a ceratosaur, which isn’t a tetanuran, but a more primitive theropod, meaning that the II,III,IV digit identity may well be shared by most/all tetanurans, with Limusaurus representing an intermediate of sorts. Thus Xu et al. state that the digit identity of Limusaurus is more in favour of a slower, stepwise acquisition of the digit identity seen in advanced tetanurans, and eventually birds. But, as the famous saying goes, you know what small hands means…(small gloves?)

That’s right, a big controversy.

If you're confused (don't worry, so am I), this may help.

If you’re confused (don’t worry, so am I), this may help.

The small gloves are off

The Xu et al. (2009) caused a fairly serious debate, with authors such as Vargas et al. arguing that the digit condition seen in Limusaurus is derived, and based on developmental and genetic work that they (Vargas et al.) carried out, suggest that faster genetic shifts occurred in the evolution of birds. Xu et al. quickly responded (and quoted  Arthur Conan Doyle in a somewhat dramatic conclusion) and argued that the shift proposed by Vargas is not likely when the digit (and manus) morphology of fossil tetanurans is considered.

I’d sincerely like to end this post with a succinct conclusion, saying that the debate has, over the last few years been wrapped up. However, such large debates in palaeontology, due to the very nature of our field (i.e. everything we love is dead) are rarely fully resolved. This case is no exception. Researchers from Yale (Bever et al. 2011) and other top world universities have stated time and time again that the frame shift hypothesis is still viable in the context of avian evolution, and in a recent summary by Xu and Mackem, Xu is not so sure, saying neither hypothesis has evidence to topple the other. Not one for revelling in an unnecessarily depressing ending (*coughs* Firefly) I’ll leave you with this: yes, we can’t always find all the answers to big questions in palaeontology and evolution, but by creating a synergistic relationship between palaeontology and biology (genetics, evo devo etc.), future discoveries in both fields are sure to shed some light on even the biggest of debates.

If you’d like to read more on this subject, and weren’t put off by my murdering of the genetics side of things, then I’d highly recommend the aforementioned Xu & Mackem (2013) paper for a recent summary of the field (see references below, it’s in bold).

References

Xu, X. et al. (2009). A Jurassic ceratosaur from China helps clarify avian digit homologies. Nature 459, 940-944.

Xu, X. & Mackem, S. (2013). Tracing the Evolution of Avian Wing Digits. Current Biology 23, R538–R544 (and references therein).

Bever, G., S. et al. (2011). Finding the frame shift: digit loss, developmental variability, and the origin of the avian hand. EVOLUTION & DEVELOPMENT 13:3, 269–279.

Vargas, A.O., Wagner, G.P. & Gauthier, J.A. in Nature Proceedings (2009).

Vargas, A.O. & Wagner, G.P. Frame-shifts of digit identity in bird evolution and Cyclopamine-treated wings. Evolution & Development 11, 163-169 (2009).

Young, R. L. et al. (2011). Identity of the avian wing digits: problems resolved and unsolved. Dev Dyn. 2011 May;240(5):1042-53.

FAQ: Ryan.

First and foremost, what’s your favourite dinosaur?

What a horrific question. It’s like asking a proud parent to choose their favourite child. In my younger days, it was all about the big theropods, tyrannosaurs and the like. But now, I can’t resist the enormous (heh…) charm of sauropods (I prefer the macronarians, Brachiosaurus and the other ‘tall’ sauropods).

Secondly, what’s you favourite (preferably extinct) animal?

A much nicer question question. Pakasuchus kapilimai. As the name suggests it’s a cat-like crocodile. What more could you want? However, honorary mention to Quetzacoatlus (the ‘evil, pin-headed, toothy nightmare monster that wants to eat your soul’, a quote from Darren Naish), because what other flying reptile with a 11m wingspan has a rap about it? Exactly.

tds_pakasuchus

Cute and scaly? Best combo ever. (Courtesy of Wikimedia Commons)

What’s your area of ‘expertise’?

I’m not huge expert in anything yet, but I have a passion for biomechanics in the archosaurs (birds, dinosaurs, crocodiles and their ancestors). I’m currently using a lot of computer software to digitally model fossils, so I guess some of my ‘expertise’ lie in digital palaeontology (the shiny-new future, more on that in a future post, probably).

How did you get into palaeontology?

Like most children of the 1990s, I grew up loving Jurassic Park. The scene where Dr. Grant (a personal hero of mine, even as I enter my twenties) first meets the Brachiosaurus is still up there as my favourite movie-moment ever. Even before that, I was an absolute dinosaur-nut. So much so, by the age of 5 I could spell palaeontologist. Since then I’ve never lost that desire to become a palaeontologist. So, after spending primary and secondary school, then college work my behind off I went to the University of Bristol to study on the Palaeontology and Evolution course. I’m now a masters student at the University of Bristol, currently looking for PhD positions to continue my career in ‘dinosaurs’.

theymoveinherds

To reiterate: this is the best film ever. Period.

What do you do in your spare time?

To be honest, I’m pretty much always reading about palaeontology. Here’s a tip for free: if you want to be an academic you have to be almost obsessed with your subject, if not, you’ll just learn to hate it. In the small amount of time I’m not holed up reading about palaeo (more likely: looking at awesome palaeo art), I’m usually performing/hanging out with Bristol Improv, reading other books, playing video games, or on Twitter (desperately attempting to get #notosuchia trending).

Favourite palaeontological paper?

Ah, I remember it well. It was the first paper I read (all the way back in the first year of my undergraduate degree) that I actually enjoyed reading. It was Rayfield (2004), and I only read it simply because it had Tyrannosaurus rex in the title. But it began my interest in biomechanics (even though I was scared by the maths behind FEA). It was one of the first papers (along with Rayfield et al. 2001) to show the importance of new computational methods in palaeontology. Essentially, I like papers with shiny pictures of fossils (and models of fossils). More recent favourites of mine include:

Allosaurus_PE_WitmerLab_still_01

The future of how palaeontologists assess om-nom-nomming in dinosaurs.

You’re a palaeontologist, so you’re like Ross from ‘F.R.I.E.N.D.S’?

If I had a penny for every time someone asks me this, I’d have paid my student loan off years ago. For simplicity, yes, I’m like Ross from Friends.

And yes Jenniston, I am still awaiting your marriage proposal.

Any tips for any budding palaeontologists out there?

If you’re still in school/college/pre-university, work hard! If you’re in university, work even harder! But seriously, if you want to go into an academic career (not just palaeontology) you’re going to have to get used to hard graft. Also, if there’s any dig sites near you (I’m looking at you American readers), then volunteer! Not only is it great fun, but it looks great when you’re applying for uni/palaeo jobs. If you can’t visit dig sites, read around the subject a lot! We know accessing the primary literature is hard (both in terms of paywalls and understanding), but don’t fear! There’s plenty of really accessible blogs (like us!) giving you news and views on all things palaeo. Also, National Geographic magazine occasionally has some nice articles (palaeo related) inside.